0%

将DataFrame内存大小减少约65%

这篇文章原文出自kaggle,我大致翻译翻一下,文中给出了reduce_mem_usage方法可以用来自动缩减dataframe占用空间

这篇notebook展示了通过使用更合理的数据类型来减少dataframe的内存使用量

方法如下:

  1. 迭代每一个column
  2. 检查column是否为数字型
  3. 检查column是否可以用integer表示
  4. 找出column下的最大值和最小值
  5. 选择适用于数据范围的最合适的数据类型

通过以上步骤处理后将一份测试数据从1.3GB减少到466MB

源码如下:

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

def reduce_mem_usage(props):
    start_mem_usg = props.memory_usage().sum() / 1024**2 
    print("Memory usage of properties dataframe is :",start_mem_usg," MB")
    NAlist = [] # Keeps track of columns that have missing values filled in. 
    for col in props.columns:
        if props[col].dtype != object:  # Exclude strings
            
            # Print current column type
            print("******************************")
            print("Column: ",col)
            print("dtype before: ",props[col].dtype)
            
            # make variables for Int, max and min
            IsInt = False
            mx = props[col].max()
            mn = props[col].min()
            
            # Integer does not support NA, therefore, NA needs to be filled
            if not np.isfinite(props[col]).all(): 
                NAlist.append(col)
                props[col].fillna(mn-1,inplace=True)  
                   
            # test if column can be converted to an integer
            asint = props[col].fillna(0).astype(np.int64)
            result = (props[col] - asint)
            result = result.sum()
            if result > -0.01 and result < 0.01:
                IsInt = True

            
            # Make Integer/unsigned Integer datatypes
            if IsInt:
                if mn >= 0:
                    if mx < 255:
                        props[col] = props[col].astype(np.uint8)
                    elif mx < 65535:
                        props[col] = props[col].astype(np.uint16)
                    elif mx < 4294967295:
                        props[col] = props[col].astype(np.uint32)
                    else:
                        props[col] = props[col].astype(np.uint64)
                else:
                    if mn > np.iinfo(np.int8).min and mx < np.iinfo(np.int8).max:
                        props[col] = props[col].astype(np.int8)
                    elif mn > np.iinfo(np.int16).min and mx < np.iinfo(np.int16).max:
                        props[col] = props[col].astype(np.int16)
                    elif mn > np.iinfo(np.int32).min and mx < np.iinfo(np.int32).max:
                        props[col] = props[col].astype(np.int32)
                    elif mn > np.iinfo(np.int64).min and mx < np.iinfo(np.int64).max:
                        props[col] = props[col].astype(np.int64)    
            
            # Make float datatypes 32 bit
            else:
                props[col] = props[col].astype(np.float32)
            
            # Print new column type
            print("dtype after: ",props[col].dtype)
            print("******************************")
    
    # Print final result
    print("___MEMORY USAGE AFTER COMPLETION:___")
    mem_usg = props.memory_usage().sum() / 1024**2 
    print("Memory usage is: ",mem_usg," MB")
    print("This is ",100*mem_usg/start_mem_usg,"% of the initial size")
    return props, NAlist

原文链接:

https://www.kaggle.com/arjanso/reducing-dataframe-memory-size-by-65


我的微信公众号:pyquant

Python量化交易实战
欢迎您扫码订阅我的微信公众号: pyquant
坚持原创技术分享,您的支持将鼓励我继续创作!

欢迎关注我的其它发布渠道